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ABSTRACT 

Both a survey of the theory of adaptive data prediction 
and a description of the computer simulation of the data 
compression mechanism a r e  presented. Results of simula­
tions of the conditional expectation predictor allow compar­
isons with other techniques. Also included are comments 
on the problem of coding for  a data compression system, 
the characteristics of the Tiros TV cloud cover pictures as 
an information source, and possible applications for data 
compression systems. 
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COMPRESSION OF VIDEO DATA BY ADAPTIVE 
NONLINEAR PRERlCTlON 

by 

Joseph A. Sciulli 


Goddurd Space Flight Center 

INTRODUCTION 

Ln recent years studies of data compression have warranted the attention of many investigators. 
Since demands for large amounts of scientific data a r e  increasing, methods for more efficient data 
transmission must be developed. Usually a communications system is designed so that the in­
formation source is sampled at a constant rate determined by the most active data periods. During 
a large percentage of time the data a r e  relatively quiescent, and so  redundant samples a r e  trans­
mitted. Data compression by prediction is a promising method of redundancy removal and is there­
fore the subject of many recent studies. A survey of the literature shows that two philosophies a r e  
being proffered for the solution to this problem. The first approach might be called the "state of 
the art'' point of view where efforts have been focused on studying well-known, easily implemented 
techniques such as the zero-order and first-order predictors. References 1 and 2 a r e  typical ex­
amples of this point of view. The philosophy of this approach is that the simpler schemes are 
within "state of the art" spacecraft instrumentation capability and are certainly easier to analyze and 
simulate. Those who have chosen this route generally feel that more sophisticated approaches a r e  
too complex to have any application value. 

The second school of thought has chosen a more sound theoretical foundation in offering a 
solution to the data compression problem; the work of Balakrishnan (Reference 3) represents this 
latter philosophy. It is true that this approach at the present time appears to be difficult to in­
strument for spacecraft use; nonetheless, it is highly desirable 'to concentrate on the more sophis­
ticated methods, especially since a high degree of onboard data processing capability (e.g., random 
access memory and arithmetic capability) will  be available in the future. 

This report  is intended to develop part  of the work reported in Reference 3 as well as to com­
plement the work reported in Reference 4. It deals with the description, simulation, and analysis 
of the results of the application of the conditional expectation predictor to the compression of 
video data and presents observations on alternate methods and possible applications of the findings. 
Suggestions for future study are given in the concluding section. 
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THEORY OF ADAPTIVE PREDICTION SYSTEM 

Before describing the prediction mechanism it would be worthwhile to formulate a working 
definition of an adaptive system. The word "adaptive" implies modification to meet new conditions. 
A truly adaptive system is characterized by its ability to (1)monitor its own performance with 
respect to some performance criteria,  (2) learn of new conditions, and (3) adjust its structure to 
f i t  the new conditions. In a real communications system no a priori knowledge of the statistical 
structure of the information source is usually available. The data compression technique to be 
described in this report satisfies the definition of adaptivity and also requires no a priori statistical 
knowledge of the data. 

Consider a sequence of descrete samples of the form shown in Figure 1. Assume that each 
sample may be any one of Q discrete values. Suppose a random variable X is defined such that 

The sample space'size of the random vector X depends on the choice of the memory s ize  M. Since 
each sample may assume any one of exactly Q discrete values, the sample space size of X for a 
memory size h-I is simply 

S = Q M .  (21 

Suppose, in addition, a second random variable is defined such that 

and corresponds to the data sample immediately succeeding x. Assume that we have been observing 
and recording the immediate successors to the random variable X over a number of samples denoted 
by L, the learning period, and that our operation must determine the optimal prediction for the i th  
sample. The optimal prediction G i  is given by 

In the case of discrete data, G i  is given simply by 

Zi  = 	 f:x j  P[. = X j / X  = ( x i - M ,X i - M t 1 ,  ... x i - l ) ]  
j = 1  

where x j  is a possible successor to X and P[x = xj/X = ( x i - M ,  ... xi - , ) ]  is the probability 
that x = x j  givenX = ... If the data a re  assumed to be a long sample from an 
ergodic process, equation 5 represents the "best" RMS predictor, since the mean is that point about 
which the second moment is minimized. 
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Memory 

Learning period 

Past data tFuture data 

Figure 1-Sequence of discrete data samples. 

To illustrate by example, assume that k observations of a particular X are made, and at each 
observation the value of the immediate successor to x is recorded. Suppose a prediction is re­
quired for the immediate successor to the (k + 1 ) s t  observation of this particular x. According to 
Equation 5 the optimal prediction is the mean of the sample of past successors to X and is given by 

Q k .,. = C X j + ?
x k + l  


j = l  

where x is a possible successor to X, 15 j _I Q ,and k j  is the number of times x was observed. 

Actually one could choose a statistic other than the mean, and correspondingly minimize some 
prediction e r r o r  criterion other than the mean square error .  The mode, for example, could be 
used as the prediction for the immediate successor to the random variable X. Utilizing the mode 
as the predictor minimizes the probability of e r ro r .  In order to implement the mode predictor, 
histograms representing the distribution of the immediate successor to each particular x in the 
sample space a r e  constructed. The most frequent successor then becomes the prediction.* One 
could also choose the median as the prediction; choice of the median minimizes the absolute error .  
It is interesting to note that i f  the data were both Gaussian and stationary then the mode, median, 
and mean would produce identical prediction results. 
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COMPUTER SIMULATION OF CONDITIONAL EXPECTATION PREDICTOR 

The results of this work were obtained from simulations on the IBM 7094 computer using 
Tiros TV cloud-cover picture data as the information source. Reference 4 contains a good deal 
of background information on these data, including their origin and subsequent formating for com­
puter simulation. A Tiros  TV picture is nominally a 500-scan-line picture with each line composed 

'This technique was implemented by Davisson of Princeton during his  participation in the 1965 Goddard Summer Workshop (Reference 5). 
His results in some c a s e s  were somewhat better than those using the mean as the prediction. 
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101 112/3141516171819110111112113114/151 of 500 TV picture elements. This study has 
I---- --xi 4 been made on 10 meteorologically significant 

( 0 )  Tiros  TV cloud-cover pictures (Figures 12 to 
Q=16, M=l, S=16 21); these pictures are the same pictures as 
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those used for the study reported in Reference 
4. Results have been obtained with each TV 
element quantized to 4 and 6 bits. 

Assume that the video data are to be scanned 
an element at a time from left to right and top 
to bottom, beginning with the top leftmost TV 
element. The choice of the parameter M (mem­
ory size) determines the number of M-dimensional 
cubes (called M-cubes in this paper) which are 
required to s tore  the statistical structure of the 
data. For example, if the data a re  quantized to 

0 1 2 3 4 5 6 7 8 9 101112131415 16 levels (Q) and a memory siz$eM of 2 is chosen, 

( b )  then there must be exactly QM or (16)* = 256 
Q=16, M=2, 5=256 	 2-cubes. Figure 2 shows memory cell ge­

ometries for Q = 16 and M = 1, 2, and 3.* The 
process begins by scanning the data one 
element at a time and observing the random 
variable X At each observation of x the predic­
tion for its immediate successor is computed 
from the statist ics stored in the M-cube associ­

~~ ated with the particular X under observation. 
0, 1 , l '  The prediction e r r o r  is given byvT---­

o,o,o l,l,O 

0,1,0 

\ 

1 I 

(c) 
Q=16, M=3, 5=4096 

Figure 2-Memory cell geometries for Q = 16 and 
M = 1, 2, and 3. 

where xa is the actual value and xP is the pre­

dicted value. If EP 'T where T is a preset al­

lowable e r r o r  threshold, the element is 

predictable and need not be transmitted. If, 

however, EP > T this particular element is not 

predictable and must be transmitted in unmod­

ified form. 1 


The data compression system at the trans­
mitter end must provide the receiver with the 
data necessary to reconstruct the original 

_. 
*For memory sizes larger than 3,  the number o f  storage locations required becomes unwieldy for practical computer simulations. 
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message within the allowable e r r o r  threshold T. To accomplishthis, the predictor at the trans­
mitter end must operate on exactly the same data which it will send to the receiver for recon­
struction. Therefore, i f  an element is predictable (E,, 2T) it need not be transmitted, but the pre­
dicted value is treated as though it were the actual value and is also used to update the statistics 
stored in the M-cube defined by the x under observation. If, however, an element is not predictable 
(Ep > T )  ,the actual value is used to update the statistics. This is called "closed-loop" operation. 
The prediction mechanism could be evaluated in the "open-loop" mode. In open-loop operation 
predicted values do not replace actual values; thus the predictor operates on raw data only. The 

I studies described in this report, however, were done in the closed-loop mode. 

The example given previously described the formulation of the sample mean in t e rms  of Equa­
tion 6. In the computer simulation it is not necessary to keep track of the relative frequency t e rms  
kj/k because each M-cube defined by x can be composed of two storage locations, a sum location, 
and a counter location. At  each observation of x, the sum location corresponding to this X is up­
dated by adding to the existing sum either the actual o r  predicted value of the successor to x de­
pending on whether the element is predictable. At the same time the corresponding counter loca­
tion is incremented by one count for each observation of X. The kj terms of Equation 6 a r e  
implicitly contained in the sum at all times. Therefore the prediction computation need be per­
formed only when a prediction is required and is easily obtained by dividing the sum by the 
counter. 

Because the learning period includes only a finite amount of past data, a prediction for the 
successor to a particular value of the random variable X could frequently be indeterminate because 
of a complete lack of past information; this is especially true at the beginning of the learning proc­
ess. One solution might be to determine a prediction from the statistics contained in the M-cubes 
neighboring the particular M-cube defined by the X under observation. This approach, however, 
does not solve the problem at the beginning and in the very early stages of the learning period. 
The obvious solution then is to make some initial assumption for the successor to each of the values 
which the random variable X can assume before the learning process begins. If it turns out that the 
initial assumption w a s  a poor one, it wil l  affect the efficiency of the prediction mechanism l e s s  and 
less  significantly as more and more of the data a r e  observed. This scheme w a s  utilized in the 
simulation of the conditional expectation predictor, and the choice of the prelearning assumption 
was made based on the results of the zero-order hold predictor (Reference 4). 

Experiments with the zero-order hold predictor showed that very frequently an element in­
tensity was within *1 or  *2 quantum levels of its predecessor. Thus, if the random variable X as­
sociated with the conditional expectation predictor is a 2-dimensional random vector 

the prelearning assumption for the successor to the ( r  + 1)st element is the ( r  + 1)st element. 
Similarly, if  X = xr,x,+~), the prelearning assumption would again be x ~ + ~ .  

5 
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Quite often a suitable prediction can not be derived from the statistics contained in the par­
ticular cube defined by the x under observation. When this occurs, it is possible to utilize the 
neighborhood statistics as the source of a secondary prediction. For example, (see Figure 3) 
suppose the random variable under observation is 

where i and j are values of element intensity specifying the coordinates of a specific 2-cube in the -

memory array.  Suppose that the conditional expectation calculated from the statistics contained 
in ( i ,  j ) is inadequate; that is, EP > T. A s  soon as it is determined that the prediction e r r o r  EP ex­
ceeds the threshold T, a secondary prediction is provided by computing the mean of the statistics 
contained in the 2-cubes in the neighborhood of cube ( i ,  j ) . The boundaries of the neighborhood 
are governed by the allowable prediction e r r o r  threshold T so as to accommodate the fidelity 
criterion. For example, if  T is 51 quantum level and a suitable prediction cannot be made from 
cube ( i ,  j ) ,the cubes which are not more than a1 quantum level away from (i, j ) are those from 
which the secondary prediction is determined. The concept of providing a secondary prediction if  
the primary prediction fails is in itself attractive, but this attractiveness is somewhat dulled when 
one considers that the use of alternate prediction modes in the same compression mechanism 
complicates the coding problem since the receiver must determine the source of each prediction. 

The discussion thus far assumes that the TV data are observed serially one element at a time, 
scanning from left to right. There is some advantage, however, in observing the data not only 
from left to right along a TV line but also from line to line so as to take advantage of the vertical 
correlation in the T V  data. Figure 4 depicts the geometry of the T V  data. If one wishes to oper­
ate the prediction mechanism only on data scanned serially from left to right, the random variable 

X would take the form of an ordered pair of 
adjacent elements on the same line (e.g., typi­

1 

cally, X = x ~ , ~ + ~ ] ) .If, however, one 
wishes to take advantage of line-to-line.TV Elements 

-1 
I 

XI, 1 XI, 2 * * x1,j X I , j + l  . . 
xz, 1 x 2 , 2  . . . XZ, i X Z , j + l  . . * 

* 2  

Xi, I Xi, 2 . . . x i , j  xi;l,j . . . xi, 500 .E 
-I 

Xi+1,1 & + I ,  2 * . * 

x500, 1 x500, 2 x500, j x500, j + l  x500, 500 

Figure 3-Two-dimensional memory cube and 
its neighboring cubes. Figure &Geometry of TV data. 
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correlation,x might consist of an ordered pair of TV elements of the form X = ( x i , j ,x i  
+1) 

where the element to be predicted is x i ,  + 1  . This scheme might be termed an elementary, two-
dimensional predictor. 

So far not too much has been said about the learning operation. Actually, the learning opera­
tion of the conditional expectation predictor (Method 11of Reference 3) is not so explicit as that of 
the linear predictor (Method I of Reference 3). In Method I the learning period is composed of 
about 20 data samples preceding the elements to be predicted. The function of this learning period 
is to develop an optimal operator based on these 20 previous points. In Method 11, however, the 
function of the learning period is to determine the optimal operation to predict the successor to 
the present observation of the random variable x. This is the basic difference between Method I 
and Method II. Method I determines an optimal operator based on a few points preceding the ele­
ments to be predicted, while Method II determines the optimal operation based on previous ob­
servations of the successor to the particular X under observation. Also, inMethod I, either a linear 
o r  a nonlinear operation is explicitly chosen. For example, Method I as it is described in Refer­
ence 4 is very obviously linear. Method 11, however, does not distinguish between linear and non­
linear operations. The prediction mechanism simply proceeds to the optimum operation without 
restriction to either linear o r  nonlinear operation. 

Since the learning period of the linear predictor is used to determine an operator over a fairly 
small number of previous data samples, and the learning period of the conditional expectation 
predictor is used to observe occupancies of a relatively large number of M-cubes, it seems reason­
able that the second method should require a much larger  learning period than that required by the 
first method. Results from computer simulations included in the discussion of results appear to 
support this argument. It is important to note that in Method I the optimal operator is found over 
a learning period just preceding the sequence of elements to be predicted,and a new learning 
process does not begin until the mean square prediction e r ro r  exceeds a preset threshold. In 
Method 11, however, the learning process is more continuous in nature, and prediction and learning 
take place almost simultaneously. 

Method I as described in Reference 4 utilizes two thresholds. The f irst is the threshold T, 
which is the allowable e r r o r  between t rue and predicted values of a data sample. The second 
threshold is associated with the mean square prediction e r ro r  which is calculated periodically to 
determine the prediction ability of the present operator. When the mean square prediction e r r o r  

I 	 exceeds this threshold, the prediction mechanism is signaled to restart its learning operation. 
Thus far in the description of Method 11only one threshold has been mentioned. This is the 
threshold T which corresponds exactly to the first threshold of Method I. Method 11in its present 

t configuration does not employ a second threshold equivalent to that of Method I. 

In the first simulation of the conditional expectation predictor, the learning-period length was 
chosen based on parametric trials with element compression ratio serving as the figure of merit. 
Figure 5 shows these results with the data quantized to 6 bits per TV element, the memory M = 1 
TV element, and an allowable e r r o r  threshold T of &2 quantum levels, where cumulative element 
compression ratio is the 4800-line (10-TV-picture) average compression ratio. This is not an 
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Figure 5-Cumulative element compression ratio versus 
learning period (in TV lines) with Q = 64 (6 bits/ 
element), M = 1, T = *2 quantum levels. 

ideal way to handle the learning operation. It 
might be worthwhile to monitor the mean square 
prediction e r r o r  and introduce a second thresh­
old as in Method I. The problem with this, as 
in the present configuration, is that the start of 
a new learning period causes a large instan­
taneous drop in the amount of statistical data 
available with which to make predictions. 

a 


A solution free from this problem is to 
allow the statistical structure to decay slowly 

b 


to some effective N element average. Each 
M-cube of the memory a r r ay  is composed of a 
summer and a counter. Suppose the counter is 
allowed to build up freely to N observations and 
future observations a r e  handled as follows: Let 

oN= Sum contained in the sum location after N observations 

P ~ + ~= ( N +  1 ) s t  sample. 

Then at the ( N +  1 ) s t  observation oNis replaced by 

Furthermore, 

N 
f f N t 3  = ( O N + ,  ' P N + 3 )  (m)' 

and so on. Thus the most recent observation is weighted most significantly; the second most re­
cent observation, the second most significantly; and so forth. 6 

DISCUSSION OF RESULTS 'I 

Figures 12 to 21 a r e  copies of the Tiros TV cloud-cover pictures used in this study. These 10 
pictures a r e  the same as those used in the study reported in Reference 4. The background on the 
original analog data, the construction of the unmodified digital pictures, and the description of the 
display of these same pictures after processing with the prediction mechanism are also contained 
in Reference 4. The pictures which appear in this report probably will have lost some of the 
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linearity of the gray scale because of the reproduction process but their overall quality should not 
be degraded because of the large number of gray scales present. 

The complete data compression system embraces two problems, the prediction problem and 
the coding problem. Although they are not independent, it is possible to think of them as two 
distinctly separate problems. In order to separate them, one needs to impose the constraint on 
the prediction mechanism that it at least does not hamper the coding mechanism in reasonably 
representing the data. With this consideration in mind, the results obtained so far can be presented 
in two parts. The first section will deal with the characteristics of the prediction mechanism with 

# 

element compression ratio as the standard of comparison. The second section presents some 
possible approaches to the coding problem with bit compression ratio as the standard of comparison. 

i 

Results of Simulations of  Prediction Mechanism 

Since it was assumed that the prediction problem and the coding problem were separate, the 
objective of the simulation of the prediction technique w a s  to maximize the element compression 
ratio. Element compression ratio is defined as the ratio of the total number of TV elements in the 
original unmodified picture to the total number of unmodified TV elements which must be trans­
mitted after the picture is processed by the prediction mechanism. Element compression ratio 
then is simply a measure of the "predictability" of the data, and certainly does not include coding 
considerations. The objective of the initial work was to simulate the technique and evaluate the 
results with element compression ratio serving as the figure of merit. 

Learning Period Considerations 

Table 1 shows element compression ratios for.the basic prediction scheme with data quantized 
to 6 bits per TV element, M = 1, T = *2 quantum levels, and learning periods varying from 2 TV 

Table 1 

Various Learning Periods with Q = 64 (6 BitdElement);  M = 1and T = *2. 

Figure Element Compression Ratio for Learning Period L of -

Number 
480 TV lines 240 TV lines 48 TV lines 24 TV lines 16 TV lines 10 TV lines 2 TV lines 

12 5.478 5.740 5.970 5.978 5.935 5.964 5.601 
13 4.814 4.820 5.023 5.024 5.006 4.967 4.725 
14 4.322 4.432 4.725 4.720 4.709 4.699 4.479 
15 4.873 4.935 5.063 5.082 5.094 5.036 4.878 
16 3.908 3.962 4.053 4.053 4.042 4.062 3.897 
17 3.688 3.710 3.822 3.814 3.810 3.793 3.660 
18 4.206 4.205 4.329 4.335 4.362 4.400 4.300 
19 2.376 2.385 2.450 2.460 2.452 2.447 2.381 
20 4.256 4.237 4.461 4.533 4.527 4.559 4.336 
2 1  9.550 9.527 10.103 10.205 10.381 10.453 10.025 

Cumulative 
Element 

4.251 4.292 4.452 4.465 4.462 4.462 4.2902ompres s ion 
Ratio 
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lines to 480 TV lines in one picture. There certainly a r e  no significant gains in compression 
ratio for any of the learning periods used. However, as a first choice one might pick a learning 
period length of 256 samples (approximately 1/2 TV line) for this case. The reasoning for this is 
quite simple. Consider the general case with a memory size M, with the data quantized to Q quantum 
levels. As described earlier in the report, prediction depends on the conditional expectation of 
the successor to a random variable X whose sample space size depends on M. In particular the 
sample space size s = @. Thus, if M = 1, Q = 16, and the objective is to predict Xp when xp-lis 
known, there are exactly (16)2 or 256 possibilities for the se t  (Xp-l,Xp). Therefore, if all cases 
were equiprobable, one would have to allow the learning period to cover 256 samples to be sure 
that each case was  observed at least  once. Thus for  the general case of Q and M ,  one might choose 
as the minimum learning period length L = Q(M+l ) . This certainly does not represent the optimum 
learning period length, but it does provide a guideline as to the minimum learning period length. 
One might govern the upper bound of the learning period size by investigating the changes in the 
structure of the statistics as more and more samples a r e  observed. In any case it is advantageous 
to keep the learning period size as small as possible, since the data a r e  suspected to be somewhat 
nonstationary. 

The results of successive experiments designed to test  the performance of the conditional 
expectation prediction on both 6- and 4-bit data a re  contained in Tables 2 and 3. Figures 6 and 7 
depict these results as bar plots. A few conclusions can be drawn from these results: 

(1) There is essentially no difference between the results for M = 1 and M = 2 without the 
statistical-neighborhood and two-dimensional prediction modes. 

Table 2 

Element Compression Ratios with Q = 6 4  (6  Bits/Element) and T = *2. 

Element Compression Ratio for ­
~ 

M = 1;L = 480 M = 1;L = 16 M =  1; L =  16 TV M = 2 ; L = 1 6 T V  M = 2; L = 16 TV 

Number T V  lines TV lines lines with SNPl lines with SNPl lines with both 

II 

- .  

5.478 5.935 7.420 8.712 
4.814 5.006 5.982 7.120 
4.322 4.709 5.686 6.703 
4.873 5 .OS4 6.249 7.217 

16 3.908 4.042 4.826 5.521 
17  3.688 3.810 4.424 4.994 
18 4.206 4.362 5.295 6.543 
19 2.376 2.452 2.825 3.316 
20 4.256 4.527 5.469 6 3 7 4  
2 1  9.550 10.381 12.623 15.941 

~ . .  - .. .. .. . ~-

Element 
Compression 4.251 4.462 5.330 6.301 

SNPl and EAP2 
-

11.425 
9.734 
8.134 
8.444 
6.413 
5.913 
6 A63 
3.297 
7 3 7 5  

17.550 
- . .. 

7.196 

Statistical neighborhood predictor. 
Element area predictor. 
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(2) A slight improvement in compression ratio w a s  achieved when the learning period L w a s  
reduced from 480 to 16 TV lines. 

(3) Significant improvements in compression ratio were achieved with the addition of the 
neighborhood and two-dimensional predictors. 

Table 3 

Element Compression Ratios with Q = 16 (4 BitdElement) and T = *l. 

Figure 
Number M = 1;  L = 480 

TV lines 

12 7.443 
13 6.355 
14 6 .OS2 
15 6.256 
16 4.904 
17 4.611 
18 5.457 
19 2.930 
20 5.418 
21 13.442 

Cumulative 
Element 5.494Compression 

Ratio 

'Stat is t ical  neighborhood predictor. 

Element Compression Ratio for ­

M = l ; L = 1 6  
T V  lines 

M =  1 ;  L =  16 TV 
lines with SNP ' M = 2; L = 16 TV 

lines with SNP' 

M = 2 ; L = 1 6 T T  
lines with both 

SNP' and EAP2 

7.846 9.697 9.762 14.267 
6.725 8.182 7.995 12.705 
6.410 7.777 7.566 10.390 
6.721 8.015 7.786 10.356 
5.258 6.331 6.523 8.146 
4.896 5.575 5.753 7.379 
5.588 6.870 7.051 7.824 
3.055 3.593 3.750 3.890 
6.334 7.789 7.923 9.690 

13.449 17.127 15.550 19.954 

5.835 7.009 7.071 8.787 

Element area predictor. 
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1 .o 2.0 
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M=2, L=480 TV LINES 

M = l ,  L=16 TV LINES 
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M=2, L=16 TV LINES, WITH 
NEIGHBORHOOD PREDICTOR 
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PREDICTORS 

I I I I I I I 
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TEN PICTURE (4800 Line Average) ELEMENT COMPRESSION RATIO 
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11 

Figure 6-Performance bar plot for conditional expectation predictor with Q = 64 
(6 bits/element) and T = * 2  quantum levels. 
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IM=l ,  L=480 TV LINES 

]M=2, L=480 N LINES 

M=l, L=16 N LINES 

M=l, L=16 TV LINES, WITH 
NEIGHBORHOOD PREDICTOR 

ITH BOTH 

I
I 

NEIGHBORHOOD AND AREA PREDICTORS 

L 1 L . 1 - L  1. 1 
1.o 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 

T E N  PICTURE (4800 N Line Average) ELEMENT COMPRESSION RATIO 

Figure 7-Performance bar plot for conditional expectation predictor with Q = 16 
(4 bits/element) and T = * 1 quantum level. 

Comparison with Other Techniques 

Figures 8 and 9 summarize in bar-plot form the relative performance of: 

(1) The zero-order hold predictor, 

(2) The linear predictor of Reference 4 (Method I - Reference 3), 

(3) The conditional expectation predictor (Method 11- Reference 3). 

The linear predictor (Method I) produces a 10-picture cumulative element compression ratio 
of about 3:l  for 6 bits per  element and T = rt2. The zero-order hold predictor provides a com­
pression ratio of about 4.2:l for 6 bits per element and T = k2 and one of about 5:l for 4 bits per 
element and T = A. The conditional expectation predictor in its most elementary form (without 
neighborhood and two-dimensional predictors) performs slightly better than does the zero-order 
hold. The conditional expectation method along with the neighborhood and two-dimensional pre­
dictors shows a significant gain with a ratio of more than 7:l for 6 bits per element and T = k2 
and a ratio of nearly 9:l for 4 bits per element and T = 21. One might reason that the zero-order 
hold does very well with respect to the other two methods cited, when the relative complexity of 
the schemes is considered. The only explanation as to why the zero-order hold predictor does 
this well is that the information source is nonstationary. Note, however, that the conditional ex­
pectation predictor does about 140 percent better than the linear predictor and about 70 percent 
better than the zero-order hold. One reason that the conditional expectation predictor does so 
much better than the linear predictor is that the former is not restrictive with respect to linear 
or  nonlinear operations and therefore is able to predict well despite the nonstationary character 
of the data. 

It was mentioned earlier that the incorporation of the statistical neighborhood predictor as an 
alternate prediction mode contributes to the coding costs since the receiver must determine which 
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LINEAR PREDICTOR, M=3, L=20, T=*2.5 

ERO -ORDER HOLD PREDICTOR, T =f 2 

CONDITIONAL EXPECTATION PREDICTOR, M =  1, L=480 LINES, T=*2 

J 
ONDlTlONAL EXPECTATION PREDICTOR, M=2, L=480 LINES, T=*2 

* 	 CONDITIONAL EXPECTATION PREDICTOR, M=l, L =  16 LINES, T=*2 

I 
CONDITIONAL EXPECTATION PREDICTOR, M =  1, L= 16 

I 

I
I LINES, T=*2, WITH NEIGHBORHOOD PREDICTOR 

I CONDITIONAL EXPECTATION PREDICTOR, 
M=2 ,  L=16 LINES, T=*2, WITHt 

I NEIGHBORHOOD PREDICTOR 
I 	 CONDITIONAL EXPECTATION 

PREDICTOR, M=2, L=16 LINES, 
T=*2, WITH BOTH NEIGHBOR­
HOOD AND AREA PREDICTORSi 	 I I I I I I I I I ­

1.o 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 

TEN PICTURE (4800 Line Average) ELEMENT COMPRESSION RATIO 

Figure 8-Performance of conditional expectation predictor relative to linear predictor of 
reference 4 and zero-order hold predictor with Q = 6 bits per element. 

I 

ERO ORDER HOLD PREDICTOR, T = i l  

CONDITIONAL EXPECTATION PREDICTOR, M=l, L=480 LINES, T=* 1 

CONDITIONAL EXPECTATION PREDICTOR, M=2, L=480 LINES, T=* 1 

CONDITIONAL EXPECTATION PREDICTOR, M =  1, L=  16 LINES, T=* 1 

1 
CONDITIONAL EXPECTATION PREDICTOR, M= 1, L=  16 LINES, T=*  1 
WITH NEIGHBORHOOD PREDICTOR 

b 	 CONDITIONAL EXPECTATION PREDICTOR, M=2, L =  16 LINES 
T=* 1 WITH BOTH NEIGHBORHOOD AND AREA PREDICTORS 

I I I I I 
2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 

TEN PICTURE (4800 Line Average) ELEMENT COMPRESSION RATIO 

Figure 9-Performance of conditional expectotion predictor compared with performance of 
zero-order hold predictor with T = rt 1 and Q = 4 bits per element. 
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statistics were used to make the prediction. One way to overcome this problem would be to con­
strain the transmitter always to make predictions from the neighborhood statistics. Preliminary 
results with the technique have shown that the mechanism is not able to predict nearly so well  
when only neighborhood predictions are permitted. 

An explanation for the basis of the choice of the allowable prediction e r ro r  T seems to be 
necessary at this point. Obviously the selection of T is very important to the performance of the 
prediction mechanism. Since the information source here is video data representing cloud-cover 
pictures, the effect of the choice of T can be easily observed when the data processed by the pre­
diction mechanism a r e  displayed. The problem here is that a judgment of the quality of a compressed 
picture must be made subjectively by eye; thus the only solution is to t r y  different thresholds until 
the maximum threshold which allows retention of minimum acceptable picture quality is determined. 
The choices of T = k2 quantum levels for the 6-bit case and T = A quantum level for the 4-bit 
case were made after experimenting with a number of thresholds. Figure 10 is a picture showing 
the effects of too large a value of T with the data quantized to 64 levels and T = *4. 

Figure 10-Effect of choosing too large a value of T (allowable prediction error). In this 
case Q = 64 (6 bits/element) and T = *4 quantum levels. 

14 

c 
1 

b '  




Coding Considerations 
The prediction problem, while not completely defined, has certainly been investigated more 

thoroughly than has the coding problem. The most important question is, "After prediction what 
does the transmitter send to the receiver"? This report will not deal explicitly with the coding 
problem, but will offer a few observations about it. Actually, the problem of coding for a data 
compression system is not an easy one, and very little work has been done in this area. 

The problem with most standard coding schemes is that they require knowledge of the sta­
tistics of the data. The prediction philosophy clearly states that no a priori knowledge of the 
statistics is necessary. It therefore seems reasonable that the coding philosophy should not be 
constrained by this requirement either .* 

In order to evaluate any hypothesis adequately, it is helpful to have some standard of com­
parison which is optimum in some sense. Suppose that P is the probability of making an accurate 
prediction and also that each of Q levels is equally likely when accurate prediction is not possible. 
If it is also assumed that the ability to predict is sample-to-sample independent, then theory ex­
plains that in the noise-free case a bit compression ratio (including coding costs) of 

can be approached with optimum coding. Figure 11 is a family of curves of bit compression ratio 
c, versus element compression ratio C ,  with logz Q = 4 and 6 .  The probability of predicting Pac­
curately is related to the element compression ratio C ,  by 

1p = I - - - .  (11)CE 

Table 4 provides examples of resultant bit compression ratios for each of the 1 0  pictures with 
Q = 64 and T = *2, and with Q = 16 and T = &laIt must be made clear that these results are 
by no means quotations of bit compression 
ratios one could obtain in practice for the fol­
lowing two reasons: 

(1) The results assume optimum coding 
which would probably not be attainable in 
practice. 

(2) These results apply to the noiseless 
channel and do not account for necessary error-
correction coding. 

These data are presented solely to provide 
guidelines to those who demand results which 
are in line with practical arguments. 

11.0, 

9.0 ­

-5.0 


ELEMENT COMPRESSION RATIO, CE 

Figure 11-Bit compression ratio C, versus 
element compression ratio CE for log2 Q = 4, 6. 

*Reference 4 shows some examples of coding the compressed data with variations of run-length coding. These results are interesting 
and similar simulations might he made with the conditional expectation predictor. 
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Table 4 

Figure 
Number Bit Element Bit 

Ratio Compression Ratio Compression Ratio 

12 11.425 6.285 14.267 6.189 
13 9.734 5.481 12.705 5.607 
14 8.134 4.705 10.390 4.757 
15 8.444 4.851 10.356 4.729 
16 6.413 3.846 8.146 3.888 
17 5.913 3.593 7.379 3.705 
18 6.863 4.064 7.824 3.762 
19 3.297 2.218 3.890 2.160 
2 0  7.875 4.576 9.690 4.473 
2 1  17.550 9.127 19.954 8.219 

-

Cumulative 
Compression 7.196 4.238 8.787 4.136 

Ratio 
- . -

Comments on the TV Pictures 

Each of Figures 12 to 21 contains in the following order: 

(1) A photograph of the original analog picture. 

(2) A photograph of the original digital picture constructed from the analog data. 

(3) Two photographs of the digital data redisplayed after processing by the conditional ex­
pectation predictor. 

Reference 4 contains a good deal of information on the history and specific characteristics of many 
of these pictures, as well  as a description of the techniques used to display them. 

The author will not attempt to give a detailed meteorological analysis for each picture but will 
rather provide a general comparison of the pictures processed by the conditional expectation 
predictor with the unmodified pictures as well as with those processed by other compression tech­
niques. It is impossible for the untrained eye to pass judgment as to the retention of meteorologi­
cal fidelity of the compressed pictures.* The only alternative for the layman is to compare the 
compressed pictures subjectively with the originals and to estimate the loss of apparent picture 
quality. 

*Reference to a “compressedwpicture does not imply that the picture geometry is made smaller o r  more compact in any way. It is 
simply true that the amount of data required to transmit a “compressed” picture over a communications link is less than the amount of 
data required to send the original picture. 
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When the pictures processed by the conditional expectation predictor are compared with the 
digital originals, the loss of picture quality is obvious but not objectionable. Contouring or  "streak­
iness" in highly detailed regions seems to be the most popular complaint. This contouring is 
caused by the abilityof the prediction mechanism to predict long sequences of elements at the same 
level successively. This effect becomes more pronounced as T is increased. A technique which 
might partially solve this problem is the use of a weighted prediction e r r o r  criterion where pre­
diction e r r o r s  are accumulated until a present threshold has been exceeded.* 

The pictures quantized to 4 bits per element with T = *1 (Figures 12(c)to 21(c)) exhibit a 
I higher degree of picture quality degradation than do the pictures quantized to 6 bits per element 

with T = *2 (Figures 12(d) to 21(d)). The reason for this is that a threshold of k l  quantum level 

I 	 at 4 bits per element is a larger  percentage e r r o r  than a threshold of *2 quantum levels at 6 bits 
per element. Both the 6-bit and the 4-bit pictures are displayed with 16 shades of gray. The 
6-bit compressed pictures with T = k2 are acceptable while the 4-bit compressed pictures with 
T = r t l  seem to be at the threshold of acceptability. Perhaps the best compromise would be to 
use data quantized to 5 bits per element and allow T = k l ,  which is the same percentage e r r o r  as 
6 bits per element with T = k2. Thus one would expect the element compression ratios for the 
5-bit, T = *1 case to be about the same as those for the g-bit, T = k2 case. If these 5-bit pic­
tures  w e r e  also displayed with 16 gray shades, then they would possess about the same quality as 
the 6-bit pictures. The first-order entropies of the unmodified digital data quantized to 4, 5, and 
6 bits per element are given in Table 5. The entropies for the 5- and 6-bit pictures are almost 
exactly the same, while the entropies for the 4-bit pictures a r e  somewhat smaller. 

The reader may find it interesting to com­
pare the pictures processed by the conditional 
expectation predictor with those processed by 
the zero-order hold and linear predictors which 
are discussed in Reference 4. In general, the 
pictures processed by the conditional expecta­
tion predictor a r e  of slightly better quality than 
zero-order-hold-predicted pictures. The pic­
tures processed by the linear predictor a r e  of 
higher quality than those processed by either of 
the other two methods. 

I 

i 

'\ 

Table 5 

First-Order Entropies. 

First-Order Entropy for ­
-

Figure 
Number 

(6 bits/TV (5 bits/TV (4 bits/TV 
element) element) element) 

12 4.510 4.472 3.512 
13 4.736 4.622 3.647 
14 4.777 4.678 3.701 
15 4.728 4.656 3.689 
16 4.257 4.201 3.227 
17 4.606 4.566 3.578 
18 4.516 4.449 3.483 
19 4.649 4.561 3.590 
20 4.891 4.813 3.829 
2 1  4.478 4.443 3.532 

Q = 64 levels Q = 32 levels Q = 16 levelt 

*This scheme was implemented by Davisson of Princeton and described in the report of his work in the 1965 Goddard Summer Work­
shop (Reference 5). 
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( a  ) Analog original. ( b )  Digital original. 

’ ,  

( c )  Processed copy generated by conditional expecta- ( d )  Processed copy generated by conditional expecta­
tion predictor with neighborhood and two-dimensional tion predictor with neighborhood and two-dimensional 
predictors. Q = 4  bits p e r  TV element; T=+ 1 level; predictors. Q = 6  bits per TV element; T=*2 levels; 
L =  16 TV lines. Element compression ratio, 14.267; b i t  L =  16TV lines. Element compression ratio, 11.425; b i t  
compression ratio, 6.189. compression ratio, 6.285. 

Figure 12 - Pictures from Tiros 111, orbit 4, frame 2, camera 2; direct transmission from satellite; 
principal point, 43.6N, 95.5W; subsatellite point, 41 .ON, 89.2W. 
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( a )  Analog original. ( b )  Digital original. 

( c )  Processed copy generated by conditional expecta- ( d )  Processed copy generated by conditional expecta­
tion predictor with neighborhood and two-dimensional tion predictor with neighborhood and two-dimensional 
predictors. Q = 4  bits p e r  TV element; T = *  1 level; predictors. Q = 6  bits per TV element; T = & 2  levels; 
L =  16 TV lines. Element compression ratio, 12.705; bi t  L =  16TV lines. Element compression ratio, 9.734; b i t  
compression ratio, 5.607. compression ratio, 5.481. 

Figure 13 - Pictures from Tiros 111, orbit 4, frame 3, camera 2; direct transmission from satellite; 
principal point, 43.4N, 95.0W; subsatellite point, 40.8N, 88.8W. 
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( a )  Analog original. ( b )  Digital original. 

( c )  Processed copy generated by conditional expecta- ( d )  Processed copy generated by conditional expecta­
tion predictor with neighborhood and two-dimensional tion predictor with neighborhood and two-dimensional 
predictors. Q = 4  bits p e r  TV element; T = *  1 level; predictors. Q = 6  bits per TV element; T = + 2  levels; 
L=16 TV lines. Element compression ratio, 10.390; b i t  L=16 TV lines. Element compression ratio, 8.134; bit  
compression ratio, 4.757. compression ratio, 4.705. 

Figure 14 - Pictures from T i m  111, orbit 4, frame 4, camera 2; direct transmission from satellite; 
principal point, 43.ON, 94.0W; subsatellite point, 40.5N, 88.1 W. 
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( a )  Analog original. ( b)  Digital original. 

( c )  Processed copy generated by conditional expecta- ( d )  Processed copy generated by conditional expecta­
tion predictor with neighborhood and two-dimensional tion predictor with neighborhood and two-dimensional 
predictors. Q = 4  bits p e r  TV element; T = k  1 level; predictors. Q = 6  bits per TV element; T = & 2  levels; 
L=16 TV lines. Element compression ratio, 10.356; b i t  L=16 TV lines. Element compression ratio, 8.444; bi t  
compression ratio, 4.729. compression ratio, 4.851. 

Figure 15 - Pictures from Tiros Ill, orbit 4, frame 5, camera 2; direct transmission from satellite; 
principal point, 42.6N, 93.0W; subsatellite point, 40.1N, 87.3W. 
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( a  ) Analog original. ( b )  Digital original. 

( c )  Processed copy generated by conditional expecta- ( d )  Processed copy generated by conditional expecta­
tion predictor with neighborhood and two-dimensional tion predictor with neighborhood and two-dimensional 
predictors. Q = 4  bits p e r  TV element; T=% 1 level; predictors. Q=6 bits per TV element; T = *  2 levels; 
L =  16 TV lines. Element compression ratio, 8.146; b i t  L=16 TV lines. Element compression ratio, 6.413; b i t  
compression ratio, 3.888. compression ratio, 3.846. 

Figure 16 - Pictures from Tiros I l l ,  orbit 102, frame 1, camera 1; taped before transmission from 
satellite; principal point, 11.5N, 4.0W; subsatellite point, 10.3N, 0.6W. 
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( a )  Analog original. ( b )  Digital original. 

( c )  Processed copy generated by conditional expecta­
tion predictor with neighborhood and two-dimensional 
predictors. Q=4  bits p e r  TV element; T = *  1 level; 
L =  16 TV lines. Element compression ratio, 7.379; b i t  
compression ratio, 3.705. 

( d )  Processed copy generated by conditional expecta­
tion predictor with neighborhood and two-dimensional 
predictors. Q = 6  bits per TV element; T=+ 2 levels; 
L=16 TV lines. Element compression ratio, 5.913; b i t  
compression ratio, 3.593. 

Figure 17 - Pictures from Tiros 111,  orbit 102, frame 2, camera 1; taped before transmission from 
satellite; principal point, 13.3N, 5.6W; subsatellite point, 11.9N, 1.9W. 
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( a )  Analog original. 

*$?' 

( b )  Digital original. 

( c ) Processed copy generated by conditional expecta­
tion predictor with neighborhood and two-dimensional 
predictors. Q = 4  bits per TV element; T = *  1 level; 
L=16 TV lines. Element compression ratio, 7.824; b i t  
compression ratio, 3.762. 

( d )  Processed copy generated by conditional expecta­
tion predictor with neighborhood and two-dimensional 
predictors. Q = 6  bits per TV element; T=+2 levels; 
L=16 TV lines. Element compression ratio, 6.863; b i t  
compression ratio, 4.064. 

Figure 18 - Pictures from Tiros V, orbit 3143, frame 6, camera 1; direct transmission from satellite; 
principal point, 32.4N, 69.3W; subsatellite point, 33.9N, 73.4W. 
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( a  ) Analog original. ( b )  Digital original. 

( c )  Processed copy generated by conditional expecta- ( d )  Processed copy generated by conditional expecta­
tion predictor with neighborhood and two-dimensional tion predictor with neighborhood and two-dimensional 
predictors. Q = 4  bits p e r  TV element; T = i  1 level; predictors. Q=6 bits per TV element; T = i  2 levels; 
L=16 TV lines. Element compression ratio, 3.890; b i t  L=16 TV lines. Element compression ratio, 3.297; b i t  
compression ratio, 2.160. compression ratio, 2.218. 

Figure 19 - Pictures from Tiros VI, orbit 1100, frame 15, camera 1; direct transmission from satellite; 
principal point, 28.3N, 79.0W; subsatellite point, 26. lN, 79.8W. 
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( a )  Analog original. ( b )  Digital original. 

( I L I ” B ( I X  

( c )  Processed copy generated by conditional expecta- ( d )  Processed copy generated by conditional expecta­
tion predictor with neighborhood and two-dimensional tion predictor with neighborhood and two-dimensional 
predictors. Q = 4  bits p e r  TV element; T=& 1 level; predictors. Q = 6  bits per TV element; T = * 2  levels; 
L =  16 TV lines. Element compression ratio, 9.690; bit L =  16 TV lines. Element compression ratio, 7.875; b i t  
compression ratio, 4.473. compression ratio, 4.576. 

Figure 20 - Pictures from Tiros VI, orbit 18, frame 21, camera 1; taped before transmission from 
satellite; principal point, 52.5N, 45.2W; subsatellite point, 50.4N, 37.3W. 
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( a )  Analog original. 

( c )  Processed copy generated by conditional expecta­
tion predictor with neighborhood and two-dimensional 
predictors. Q = 4  bits p e r  TV element; T=+ 1 level; 
L =  16 TV lines. Element compression ratio, 19.954; b i t  
compression ratio, 8.219. 

Figure 21 - Pictures from Tiros VI, orbit 3692, 

(.b) Digital original. 

( d )  Processed copy generated by conditional expecta­
tion predictor with neighborhood and two-dimensional 
predictors. Q = 6  bits per TV element; T = +  2 levels; 
L =  16 TV lines. Element compression ratio, 17.550; b i t  
compression ratio, 9.127. 

frame 31, camera 1; taped before transmission 
from satellite; principal point, 36.8N, 57.2W; subsatellite point, 33. lN, 48.7W. 
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APPLICATIONS FOR DATA COMPRESSION SYSTEMS 


Some of the most obvious applications of data compression systems a r e  in deep space com­
munications, earth-orbiting operational spacecraft, and land-line data transmission. Figure 22 is 
a block diagram of both the transmitter and receiver ends of a data compression system model. 
At the transmitter end, the predictor accepts raw data from the information source. The predictor 
contains arithmetic, memory, and control functions which a r e  arranged according to some predic­
tion algorithm. Each raw data sample is compared to the corresponding predicted sample, and 
the prediction e r r o r  EP is determined. If the prediction e r r o r  exceeds some preset threshold T, 

the raw data sample must be transmitted in unmodified form. If, however, the prediction e r r o r  is 
less  than T, the sample is predictable and need not be transmitted. The comparator output is also 
fed back to the predictor to update the prediction mechanism. The encoder accepts raw unpredic­
table samples as well as indications of predictable samples and arranges this information accord­
ing to some appropriate code. The information rate at the output of the encoder is, in general, non­
uniform. Since the main data-storage device would probably require a uniform read-in rate, a 
smoothing buffer is necessary. 

At  the receiver end, the decoder provides the predictor with all the data necessary to recon­
struct the original message within the allowable prediction error .  The predictor at the receiver 
is an exact copy of the predictor at the transmitter. After reconstruction, the message is trans­
ferred to the information sink. 

Bit compression ratio can be a very useful parameter to a communications system designer. 
If c, represents the bit compression ratio, then the designer can choose to reduce the transmission 

I 
I I I I I I I 

-
TRANSMITTER 

DECODER . b PREDICTOR 
INFORMAT10N 

SINK 

RECEIVER 

DATA FLOW - _ _ - CONTROL 

Figure 22-Block diagram of data compression system. 
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time to TIC, for the same bandwidth o r  alternatively reduce the original bandwidth to B,/c,. If one 
desires to save power o r  reduce spacecraft weight by saving power, the signal power can be re­
duced by S/C, without changing the S/N ratio, since the thermal noise is directly proportional to 
the bandwidth. In practice, however, one would probably choose to employ data compression tech­
niques to achieve high communication channel efficiency. This can be achieved by keeping the 
information rate close to the channel capacity at all times. This implies a channel with the capa­
bility of adapting to the time-varying information rate. 

CONCLUDING REMARKS 

The most important outcome of this work was that the conditional expectation predictor 
produced compression ratios greater than either the zero-order hold o r  the linear predictors, 
This result is true for each of the 10 TV frames used in the study and is significant since 
it shows that the conditional expectation predictor yields superior compression ratios, de­
spite the suspected nonstationary character of the information source. To summarize the num­
erical  results, it should be noted that the conditional expectation predictor produced bit compres­
sion ratios (assuming ideal coding in the noiseless case) exceeding 5:l on a number of single TV 
frames. It is also important that the cumulative compression ratio (10-picture average) exceeded 
4:l for both the cases with 6 and those with 4 bits per TV element. A t  the same time the compressed 
pictures (Figures 12 to 21) seem to retain at least an acceptable level of quality. 

Many interesting problems associated with adaptive data compression systems require further 
investigation. The prediction mechanism itself should be further developed to include, for example, 
the optimal relationship between learning period and memory size. Certainly the determination of 
efficient coding schemes for the adaptive data compression system for the noiseless channel is 
the most important problem still to be solved. 

Further investigations might also consist of simulating noise environments for possible mis­
sions and analyzing effects on the noiseless-case coding structure in order to develop efficient 
error-correction codes. Investigations of this sor t  would eventually allow laboratory simulation 
of a complete compression system from the information source to the transmitter, through the 
communication channel to the receiver, and finally to the information sink. This arrangement 
would permit feasibility studies for specific missions as well  as establish system design guidelines. 
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